

Strongly (p, q)-Summable Sequences

Rachid Soualmia ${ }^{\text {a }}$, Dahmane Achour ${ }^{\text {a }}$, Elhadj Dahia ${ }^{\text {b,a }}$
${ }^{a}$ Laboratoire d'Analyse Fonctionnelle et Géométrie des Espaces, University of M'sila, 28000, Algeria.
${ }^{b}$ Ecole normale supérieure de Bousaada, 28001 Bousaada, Algeria.

Abstract

In this paper we provide a detailed study of the Banach space of strongly (p, q)-summable sequences. We prove that this space is a topological dual of a class of mixed (s, p)-summable sequences, showing in this way new properties of this space. We apply these results to obtain the characterization of the adjoints of (r, p, q)-summing operators.

1. Introduction

In 1973, the Banach space of strongly p-summable sequences was defined by Cohen [4]. He used this space to study and characterize the class of strongly p-summing operators. After this, in 1976, Apiola studied the duality relations between the space of strongly p-summable sequences, the absolutely p-summable sequences and weakly p-summable sequences (see [1, Section 2]) and applied these relations to characterize the adjoints of absolutely (p, q)-summing and Cohen (p, q)-nuclear operators. The 1982 paper by Roshdi Khalil [7] is another cornerstone in this line of thought. He introduced there the Banach space of strongly (p, q)-summable sequences, extending the space of strongly p-summable sequences in a natural way, and found his dual. In 2002, Arregui and Blasco published the paper [2], describing some properties of this space but under the name of (p, q)-summing sequences. In the famous book [9] we find another interesting sequence space: the space of mixed (s, p)-summable sequences (see also [8]).

In this work, we continue the study of the Banach space of strongly (p, q)-summable sequences. We shall begin by showing that this space coincides with the one of (p, q)-summing sequences (presented by Arregui and Blasco). We investigate the duality between the space of strongly (p, q)-summable sequences and the space of mixed (s, p)-summable sequences, obtaining in this way some relevant properties of this space. Also, we give an application to (r, p, q)-summing operators introduced by Pietsch in [9].

The paper is organized as follows. After this introduction, in Section 2 we recall some notation and basic facts on some classes of vector-valued sequences. In Section 3 we focus in the study of strongly (p, q)-summable sequences, and we show our main result: the space of mixed (s, p)-summable sequences is a predual of the space of strongly $\left(q^{*}, s^{*}\right)$-summable sequences. Also, we compare this space with the

[^0]spaces of absolutely p-summable sequences and strongly p-summable sequences, and we prove an inclusion theorem. Finally, Section 4 is devoted to characterize operators that belong to the space of (r, p, q)-summing operators by defining the associated operator between adequate sequence spaces.

2. Notation and preliminaries

Throughout this paper we use standard Banach space notation. Let X be a Banach space over the scalar field \mathbb{K} (either \mathbb{R} or \mathbb{C}), B_{X} is the closed unit ball of X and X^{*} is the topological dual of X. Let $1 \leq p \leq \infty$, we write p^{*} for the real number satisfying $1 / p+1 / p^{*}=1$. The symbol $X^{\mathbb{N}}$ will denote the sequences with values in X.

Let $\ell_{p}(X)$ the Banach space of all absolutely p-summable sequences $\left(x_{n}\right)_{n}$ in X with the norm

$$
\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p}(X)}=\left(\sum_{n \geq 1}\left\|x_{n}\right\|^{p}\right)^{\frac{1}{p}},
$$

and we have the isometric isomorphism identification $\ell_{p}(X)^{*}=\ell_{p^{*}}\left(X^{*}\right)$.
We denote by $\ell_{p, \omega}(X)$ the Banach space of all weakly p-summable sequences $\left(x_{n}\right)_{n}$ in X with the norm

$$
\left.\left\|\left(x_{n}\right)_{n}\right\|_{\rho_{p, 0}(X)}=\sup _{\left\|u^{*}\right\|_{x} \leq 1}\left(\sum_{n \geq 1} \mid x^{*}\left(x_{n}\right)\right)^{p}\right)^{\frac{1}{p}} .
$$

If $p=\infty$ we are restricted to the case of bounded sequences and in $\ell_{\infty}(X)$ we use the sup norm. If we take $X=\mathbb{K}$, then the spaces $\ell_{p}(\mathbb{K})$ and $\ell_{p, \omega}(\mathbb{K})$ coincides and we denote $\ell_{p}(\mathbb{K})$ by ℓ_{p}. If $1 \leq p \leq s \leq \infty$, we consider the real number r satisfying $1 / r+1 / s=1 / p$.

A sequence $\left(x_{n}\right)_{n} \in X^{\mathbb{N}}$ is said to be mixed (s, p)-summable if there exists a sequence $\tau=\left(\tau_{n}\right)_{n} \in \ell_{r}$ and a sequence $x^{0}=\left(x_{n}^{0}\right)_{n} \in \ell_{s, \omega}(X)$ such that for all $n \in \mathbb{N}$ we have

$$
\begin{equation*}
x_{n}=\tau_{n} \cdot x_{n}^{0} . \tag{1}
\end{equation*}
$$

We denote by $\ell_{m(s, p)}(X)$ the Banach space of all mixed ($\left.s, p\right)$-summable sequences of elements of X with the norm

$$
\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{m(s p)}(X)}=\inf \left\|\left(\tau_{n}\right)_{n}\right\|_{\ell_{r}}\left\|\left(x_{n}^{0}\right)_{n}\right\|_{\varepsilon_{s, \omega}(X)},
$$

where the infimum is taken over all possible representations of x in the form (1).
Note that if $1 \leq p, s_{1}, s_{2} \leq \infty$ such that $s_{1} \leq s_{2}$, then

$$
\begin{equation*}
\ell_{m\left(s_{1}, p\right)}(X) \subset \ell_{m\left(s_{2}, p\right)}(X), \tag{2}
\end{equation*}
$$

with $\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{m(2, p)}(X)} \leq\left\|\left(x_{n}\right)_{n}\right\|_{\left.\ell_{m(1, p)}\right)(X)}$, for all $\left(x_{n}\right)_{n} \in \ell_{m(1), p)}(X)$.
If $s=p$ we have

$$
\begin{equation*}
\ell_{m(p, p)}(X)=\ell_{p, \omega}(X), \tag{3}
\end{equation*}
$$

with $\|\cdot\|_{\ell_{n(p, p)}(X)}=\|\cdot\|_{\gamma_{p, \omega}(X)}$ and for $s=+\infty$ we obtain

$$
\begin{equation*}
\ell_{m(\infty, p)}(X)=\ell_{p}(X), \tag{4}
\end{equation*}
$$

with $\|\cdot\|_{\ell_{m(0, p)}(X)}=\|\cdot\| \|_{\rho_{p}(X)}$.
The space of strongly p-summable sequences ($1<p<+\infty$) was introduced by Cohen in [4] in order to give a characterization of the class of strongly p-summing linear operators.

A sequence $\left(x_{n}\right)_{n} \in X^{\mathbb{N}}$ is strongly p-summable if the series $\sum_{n=1}^{\infty} x_{n}^{*}\left(x_{n}\right)$ converges for all $\left(x_{n}^{*}\right)_{n} \in \ell_{p^{*}, \omega}\left(X^{*}\right)$. We denote by $\ell_{p}\langle X\rangle$ the space of strongly p-summable sequences in X which is a Banach space (see [5, Proposition 2.1.8]) with the norm

$$
\begin{equation*}
\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p}\langle X\rangle}:=\sup _{\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{p^{*}, \omega}\left(X^{*}\right)} \leq 1}\left|\sum_{n \geq 1} x_{n}^{*}\left(x_{n}\right)\right| . \tag{5}
\end{equation*}
$$

If $p=1$ we have $\ell_{1}\langle X\rangle=\ell_{1}(X)$ with $\|\cdot\|_{\ell_{1}\langle X\rangle}=\|\cdot\|_{\ell_{1}(X)}$.
The relationships between the various sequence spaces are given by

$$
\ell_{p}\langle X\rangle \subset \ell_{p}(X) \subset \ell_{m(s, p)}(X) \subset \ell_{p, \omega}(X),
$$

with

$$
\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p, \omega}(X)} \leq\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{m(s, p)}(X)} \leq\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p}(X)} \leq\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p}\langle X\rangle},
$$

for all $\left(x_{n}\right)_{n} \in \ell_{p}\langle X\rangle$.
Further, Apiola, in [1], shows the duality identifications

$$
\ell_{p}\langle X\rangle^{*}=\ell_{p^{*}, \omega}\left(X^{*}\right) \quad \text { and } \quad \ell_{p, \omega}(X)^{*}=\ell_{p^{*}}\left\langle X^{*}\right\rangle .
$$

3. Strongly (p, q)-summable sequences

Roshdi Khalil in [7] introduced the Banach space of strongly (p, q)-summable sequences, $\ell_{p, q}\langle X\rangle(1 \leq$ $p, q \leq+\infty)$, naturally extending the space of strongly p-summable sequences which described as follows.

A sequence $\left(x_{n}\right)_{n}$ in X is strongly (p, q)-summable if $\sum_{n}\left|x_{n}^{*}\left(x_{n}\right)\right|^{p}<+\infty$ for all $\left(x_{n}^{*}\right)_{n} \in \ell_{q^{*}, \omega}\left(X^{*}\right)$. The norm of $\left(x_{n}\right)_{n}$ is given by

$$
\left\|\left(x_{n}\right)_{n}\right\|_{\rho_{p, q}\langle X\rangle}:=\sup _{\|\left(x_{n}^{*}\left\|_{n}\right\|_{q^{*},\left(X^{*}\right)} \leq 1\right.}\left(\sum_{n \geq 1}\left|x_{n}^{*}\left(x_{n}\right)\right|^{p}\right)^{\frac{1}{p}} .
$$

For $p=1$ we have

$$
\begin{equation*}
\ell_{1, q}\langle X\rangle \equiv \ell_{q}\langle X\rangle \tag{6}
\end{equation*}
$$

with $\|\cdot\|_{\ell_{1, q}\langle X\rangle}=\|\cdot\|_{\ell_{q}\langle X\rangle}$.
Arregui and Blasco in [2] introduced and studied the Banach space, $\ell_{\pi_{p, q}}(X)$, of (p, q)-summing sequences $(1 \leq p, q<\infty)$, to be the space of all sequence in X such that for some constant $C \geq 0$ we have

$$
\left(\sum_{i=1}^{n}\left|x_{i}^{*}\left(x_{i}\right)\right|^{p}\right)^{\frac{1}{p}} \leq C \sup _{x \in B_{X}}\left(\sum_{i=1}^{n}\left|x_{i}^{*}(x)\right|^{q}\right)^{\frac{1}{q}} .
$$

The smallest constant C such that the above inequality holds is the norm of $\left(x_{n}\right)_{n} \in \ell_{\pi_{p, q}}(X)$, and is denoted by $\pi_{p, q}\left(\left(x_{n}\right)_{n}\right)$.

In the following proposition we show that the spaces $\ell_{\pi_{p, q^{*}}}(X)$ and $\ell_{p, q}\langle X\rangle$ are coincides. The proof is straightforward using the closed graph theorem and will be omitted.

Proposition 3.1. The sequence $\left(x_{n}\right)_{n} \in X^{\mathbb{N}}$ is $\left(p, q^{*}\right)$-summing sequence if and only if it is strongly (p, q)-summable sequence. Moreover, we have

$$
\left\|\left(x_{n}\right)_{n}\right\|_{p, q}\langle X\rangle=\pi_{p, q^{*}}\left(\left(x_{n}\right)_{n}\right) .
$$

The following theorem asserts that the topological dual of $\ell_{p, q}\langle X\rangle$ is the product space $\ell_{p^{*}} \cdot \ell_{q^{*}, \omega}\left(X^{*}\right)$, i.e. the set of all elements of the form $x . y$ such that $x \in \ell_{p^{*}}$ and $y \in \ell_{q^{*}, \omega}\left(X^{*}\right)$ (see [7, Theorem 1.3]). Pietsch in [9, Page 225] mentioned that this set is exactly the Banach space $\ell_{m\left(q^{*}, s^{*}\right)}\left(X^{*}\right)$ such that $\frac{1}{s^{*}}=\frac{1}{p^{*}}+\frac{1}{q^{*}}$.

Theorem 3.2. Let $1 \leq p, q, s \leq+\infty$ such that $\frac{1}{s^{*}}=\frac{1}{p^{*}}+\frac{1}{q^{*}}$. The space $\ell_{m\left(q^{*}, s^{*}\right)}\left(X^{*}\right)$ is isometrically isomorphic to $\left(\ell_{p, q}\langle X\rangle\right)^{*}$ through the mapping ψ given by

$$
\psi\left(\left(x_{n}^{*}\right)_{n}\right)\left(\left(x_{n}\right)_{n}\right)=\sum_{n \geq 1} x_{n}^{*}\left(x_{n}\right)
$$

for every $\left(x_{n}^{*}\right)_{n} \in \ell_{m\left(q^{*}, s^{*}\right)}\left(X^{*}\right)$ and $\left(x_{n}\right)_{n} \in \ell_{p, q}\langle X\rangle$.
Remark 3.3. The duality identification $\left(\ell_{p, q}\langle X\rangle\right)^{*} \equiv \ell_{m\left(q^{*}, s^{*}\right)}\left(X^{*}\right)$ yields a new formula for the norm $\|\cdot\|_{\ell_{p, q}\langle X\rangle}$,

$$
\begin{equation*}
\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p, q}(X)}=\sup _{\left\|\left(x_{n}^{*}\right)_{n}\right\|_{e_{m\left(q^{*}, s^{*}\right)\left(X^{*}\right)} \leq 1}}\left|\sum_{n \geq 1} x_{n}^{*}\left(x_{n}\right)\right| . \tag{7}
\end{equation*}
$$

Consequently, we obtain a special case of the strongly (p, q)-summable sequences.
Corollary 3.4. If $q=1$ then $\ell_{p, 1}\langle X\rangle=\ell_{p}(X)$ with $\|\cdot\|_{\ell_{p, 1}(X\rangle}=\|\cdot\|_{\ell_{p}(X)}$.
Proof. For all $\left(x_{n}\right)_{n} \in \ell_{p}(X)$, by (4) we have

$$
\begin{aligned}
\left\|\left(x_{n}\right)_{n}\right\|_{e_{p, 1}\langle X\rangle} & =\sup _{\left\|\left(x_{n}^{*}\right)\right\|_{n} \|_{e_{m\left(\infty, p^{*}\right)\left(x^{*}\right)} \leq 1}}\left|\sum_{n \geq 1} x_{n}^{*}\left(x_{n}\right)\right| \\
& =\sup _{\left\|\left(x_{n}^{*}\right)\right\|_{n} \|_{p^{*}\left(X^{*}\right)} \leq 1}\left|\sum_{n \geq 1} x_{n}^{*}\left(x_{n}\right)\right| \\
& =\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p}(X)}<\infty .
\end{aligned}
$$

We can use (2) and (7) to establish useful inclusion relations between $\ell_{p, q}\langle X\rangle$.
Proposition 3.5. Let $1 \leq p_{1}, p_{2}, q_{1}, q_{2}, s \leq \infty$ such that $1+\frac{1}{s}=\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}$, if $q_{1} \leq q_{2}$ then $p_{2} \leq p_{1}$ and we have $\ell_{p_{2}, q_{2}}\langle X\rangle \subset \ell_{p_{1}, q_{1}}\langle X\rangle$. In this case we have $\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p_{1}, q_{1}}\langle X\rangle} \leq\left\|\left(x_{n}\right)_{n}\right\|_{\rho_{p_{2}, q_{2}}\langle X\rangle}$, for all $\left(x_{n}\right)_{n} \in \ell_{p_{2}, q_{2}}\langle X\rangle$.
In the following proposition we prove a relationship between the space of absolutely p-summable sequences, strongly p-summable sequences and strongly (p, q)-summable sequences.

Proposition 3.6. Let $1 \leq p, q \leq+\infty$, we have the inclusions $\ell_{p}(X) \subset \ell_{p, q}\langle X\rangle$ and $\ell_{q}\langle X\rangle \subset \ell_{p, q}\langle X\rangle$. In addition $\|\cdot\|_{e_{p, q}\langle X\rangle} \leq\|\cdot\|_{e_{p}(X)}$ and $\|\cdot\|_{e_{p, q}\langle X\rangle} \leq\|\cdot\|_{e_{q}\langle X\rangle}$.
Proof. If $\left(x_{n}\right)_{n} \in \ell_{p}(X)$ we have

$$
\begin{aligned}
\left\|\left(x_{n}\right)_{n}\right\|_{\rho_{p, q}\langle X\rangle} & \leq \sup _{\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{0,0}\left(X^{*}\right)} \leq 1}\left\|\left(x_{n}^{*}\left(x_{n}\right)\right)_{n}\right\|_{\ell_{p}} \\
& =\left\|\left(x_{n}\right)_{n}\right\|_{\rho_{p, 1}\langle X\rangle}=\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p}(X)}<\infty .
\end{aligned}
$$

Similarly, if $\left(x_{n}\right)_{n} \in \ell_{q}\langle X\rangle$,

$$
\begin{aligned}
\left\|\left(x_{n}\right)_{n}\right\|_{\rho_{p, q}\langle X\rangle} & \leq \sup _{\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{q^{*},\left(\alpha X^{*}\right)} \leq 1}\left\|\left(x_{n}^{*}\left(x_{n}\right)\right)_{n}\right\|_{\ell_{1}}} \\
& =\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{1, q}\langle X\rangle}=\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{q}\langle X\rangle}<\infty .
\end{aligned}
$$

In order to give the proof of the main theorem we need the following results.
Lemma 3.7. Let $\left(x_{n}\right)_{n} \in \ell_{p, q}\langle X\rangle$. Then,

$$
\begin{equation*}
\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p, q}\langle X\rangle}=\sup _{\left\|\left(\alpha_{n}\right)\right\|_{\ell_{p^{*}} \leq 1}}\left\|\left(\alpha_{n} x_{n}\right)_{n}\right\|_{\ell_{q}\langle X\rangle} \tag{8}
\end{equation*}
$$

Proof. Let $\left(x_{n}\right)_{n} \in \ell_{p, q}\langle X\rangle$, by using the duality between the spaces ℓ_{p} and $\ell_{p^{*}}$ we obtain

$$
\begin{aligned}
\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p, q}\langle X\rangle} & =\sup _{\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{q^{*},(, w}} \leq 1}\left\|\left(x_{n}^{*}\left(x_{n}\right)\right)_{n}\right\|_{\ell_{p}} \\
& =\sup _{\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{q^{*}, w}, \omega}} \sup \left|\sum_{\left(\alpha_{n}\right)^{n} \|_{\ell_{p^{*}}} \leq 1} \sum_{n \geq 1} \alpha_{n} x_{n}^{*}\left(x_{n}\right)\right| \\
& =\sup _{\left\|\left(\alpha_{n}\right)_{n}\right\|_{p^{*}} \leq 1}\left\|\left(\alpha_{n} x_{n}\right)_{n}\right\|_{\ell_{q}\langle X\rangle} .
\end{aligned}
$$

Lemma 3.8. [3, Page 526]. For all $\left(x_{n}^{*}\right)_{n} \in \ell_{p}\left\langle X^{*}\right\rangle$ we have

$$
\begin{equation*}
\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{p}\left\langle X^{*}\right\rangle}=\sup _{\left\|\left(x_{n}\right)_{n}\right\|_{p^{*},\left(\omega^{(x)}\right.} \leq 1}\left\|\left(x_{n}^{*}\left(x_{n}\right)\right)_{n}\right\|_{\ell_{1}} \tag{9}
\end{equation*}
$$

Proposition 3.9. For each $\left(x_{n}^{*}\right)_{n} \in \ell_{p, q}\left\langle X^{*}\right\rangle$, we have

$$
\begin{equation*}
\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{p, q}\left\langle X^{*}\right\rangle}=\sup _{\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{q^{*}, \omega}} \leq 1}\left\|\left(x_{n}^{*}\left(x_{n}\right)\right)_{n}\right\|_{\ell_{p}} \tag{10}
\end{equation*}
$$

Proof. Let $\left(x_{n}^{*}\right)_{n} \in \ell_{p, q}\left\langle X^{*}\right\rangle$. By (8) and (9) we get

$$
\begin{aligned}
\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{p, q}\left\langle X^{*}\right\rangle} & =\sup _{\left\|\left(\alpha_{n}\right)_{n}\right\|_{\ell_{p^{*}} \leq 1}}\left\|\left(\alpha_{n} x_{n}^{*}\right)_{n}\right\|_{\ell_{q}\left\langle X^{*}\right\rangle} \\
& =\sup _{\left\|\left(\alpha_{n}\right)_{n}\right\|_{\rho_{p^{*}} \leq 1} \leq 1\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{q^{*}, \omega}} \leq 1}\left\|\left(\alpha_{n} x_{n}^{*}\left(x_{n}\right)\right)_{n}\right\|_{\ell_{1}} \\
& =\sup _{\left\|\left(x_{n}\right)_{n}\right\|_{q^{*}, \omega} \leq 1} \sup _{\left\|\left(\alpha_{n}\right)_{n}\right\|_{\ell_{p^{*}} \leq 1}}\left\|\left(\alpha_{n} x_{n}^{*}\left(x_{n}\right)\right)_{n}\right\|_{\ell_{1}} \\
& =\sup _{\left\|\left(x_{n}\right)_{n}\right\|_{q^{*}, \omega} \leq 1}\left\|\left(x_{n}^{*}\left(x_{n}\right)\right)_{n}\right\|_{\ell_{p}} .
\end{aligned}
$$

Now we are ready to prove the main theorem. This result asserts that the space of mixed (s, p)-summable sequences is a predual of $\ell_{q^{*}, s^{*}}\left\langle X^{*}\right\rangle$.

Theorem 3.10. If $1 \leq p, q, s \leq+\infty$ such that $\frac{1}{q}+\frac{1}{s}=\frac{1}{p}$ then we have the isometric isomorphic identification

$$
\left(\ell_{m(s, p)}(X)\right)^{*} \equiv \ell_{q^{*}, s^{*}}\left\langle X^{*}\right\rangle
$$

through the mapping $T: \ell_{q^{*}, s^{*}}\left\langle X^{*}\right\rangle \longrightarrow\left(\ell_{m(s, p)}(X)\right)^{*}$ defined by

$$
T\left(\left(x_{n}^{*}\right)_{n}\right)\left(\left(x_{n}\right)_{n}\right)=\sum_{n \geq 1} x_{n}^{*}\left(x_{n}\right)
$$

for all $\left(x_{n}^{*}\right)_{n} \in \ell_{q^{*}, s^{*}}\left\langle X^{*}\right\rangle$ and $\left(x_{n}\right)_{n} \in \ell_{m(s, p)}(X)$.
Proof. First note that $\frac{1}{q^{*}}+\frac{1}{s^{*}}=1+\frac{1}{p^{*}}$. It is easy to see that the correspondence T is linear. We take $\left(x_{n}^{*}\right)_{n} \in \ell_{q^{*}, s^{*}}\left\langle X^{*}\right\rangle$ and let $\left(x_{n}\right)_{n}=\left(\tau_{n} x_{n}^{0}\right)_{n} \in \ell_{m(s, p)}(X)$ where $\left(\tau_{n}\right)_{n} \in \ell_{q}$ and $\left(x_{n}^{0}\right)_{n} \in \ell_{s, \omega}(X)$. Hence, by Hölder's inequality it follows that

$$
\begin{aligned}
\left|\sum_{n \geq 1} x_{n}^{*}\left(x_{n}\right)\right| & \leq \sum_{n \geq 1}\left|\tau_{n}\right|\left|x_{n}^{*}\left(x_{n}^{0}\right)\right| \\
& \leq\left\|\left(\tau_{n}\right)_{n}\right\|_{\ell_{q}}\left\|\left(x_{n}^{*}\left(x_{n}^{0}\right)\right)_{n}\right\|_{\ell_{q^{*}}} \\
& \leq\left\|\left(\tau_{n}\right)_{n}\right\|_{\ell_{q}}\left\|\left(x_{n}^{0}\right)_{n}\right\|_{\varrho_{s, \omega}(X)} \sup _{\left\|\left(z_{n}\right)\right\|_{\ell_{s, \omega}(X)} \leq 1}\left\|\left(x_{n}^{*}\left(z_{n}\right)\right)_{n}\right\|_{\ell_{q^{*}}} \\
& =\left\|\left(\tau_{n}\right)_{n}\right\|_{\ell_{q}}\left\|\left(x_{n}^{0}\right)_{n}\right\|_{\ell_{s, \omega}(X)}\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{q^{*}, s^{*}}\left(X^{*}\right\rangle}
\end{aligned}
$$

Since this holds for all possible factorization of the form $x_{n}=\tau_{n} x_{n}^{0}$, it follows that,

$$
\left|T\left(\left(x_{n}^{*}\right)_{n}\right)\left(\left(x_{n}\right)_{n}\right)\right| \leq\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{m(s, p)}(X)}\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{q^{*}, s^{*}}\left\langle X^{*}\right\rangle}
$$

Since $\left(x_{n}\right)_{n}$ is arbitrary it follows that

$$
\left\|T\left(\left(x_{n}^{*}\right)_{n}\right)\right\| \leq\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{q^{*}, s^{*}}\left\langle X^{*}\right\rangle} .
$$

This is implies that T is well-defined and continuous. Now consider the linear operator $S:\left(\ell_{m(s, p)}(X)\right)^{*} \longrightarrow$ $\ell_{q^{*}, s^{*}}\left\langle X^{*}\right\rangle$ given by $S(g)=\left(g \circ \varphi_{n}\right)_{n}$ where $g \in\left(\ell_{m(s, p)}(X)\right)^{*}$ and $\varphi_{n}: X \longrightarrow \ell_{m(s, p)}(X)$ is the linear operator defined by $\varphi_{n}(x)=(0, \cdots, 0, x, 0, \cdots)$ with x placed in the n-th position. Using (10) and the duality between ℓ_{q} and $\ell_{q^{*}}$ we obtain

$$
\begin{aligned}
\left\|\left(g \circ \varphi_{n}\right)_{n}\right\|_{\ell_{q^{*}, s^{*}}\left(X^{*}\right\rangle} & =\sup _{\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{s, \omega}(X)} \leq 1}\left\|\left(g \circ \varphi_{n}\left(x_{n}\right)\right)_{n}\right\|_{\ell_{q^{*}}} \\
& =\sup _{\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{s, \omega}(X)} \leq 1} \sup _{\left\|\left(\alpha_{n}\right)_{n}\right\|_{\ell_{q}} \leq 1}\left|\sum_{n \geq 1} g \circ \varphi_{n}\left(\alpha_{n} x_{n}\right)\right| \\
& =\sup _{\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{s, \omega}(X)} \leq 1\left\|\left(\alpha_{n}\right)_{n}\right\|_{\ell_{q}} \leq 1} \sup \left|g\left(\left(\alpha_{n} x_{n}\right)_{n}\right)\right| \\
& \leq\|g\|_{\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{s, \omega}(X)} \leq 1\left\|\left(\alpha_{n}\right)_{n}\right\|_{\ell_{q}} \leq 1}\left\|\left(\alpha_{n} x_{n}\right)_{n}\right\|_{\ell_{m(s, p)}(X)} \\
& \leq\|g\|_{\left\|\left(x_{n}\right)_{n}\right\|_{\varepsilon_{s, \omega}(X)} \leq 1\left\|\left(\alpha_{n}\right)_{n}\right\|_{\ell_{q}} \leq 1}\left\|\left(\alpha_{n}\right)_{n}\right\|_{\ell_{q}}\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{s, \omega}(X)} \\
& \leq\|g\|<\infty .
\end{aligned}
$$

This means that $\left(g \circ \varphi_{n}\right)_{n} \in \ell_{q^{*}, s^{*}}\left\langle X^{*}\right\rangle$ and we can conclude that S is well-defined, continuous and $\|S\| \leq 1$. On the other hand, a straightforward calculation shows that S and T are inverses. Finally, if $\left(x_{n}^{*}\right)_{n} \in \ell_{q^{*}, s^{*}}\left\langle X^{*}\right\rangle$ then

$$
\left\|T\left(\left(x_{n}^{*}\right)_{n}\right)\right\| \leq\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{q^{*}, s^{*}}\left\langle X^{*}\right\rangle}=\left\|S \circ T\left(\left(x_{n}^{*}\right)_{n}\right)\right\|_{\ell_{q^{*}, s^{*}}\left\langle X^{*}\right\rangle} \leq\left\|T\left(\left(x_{n}^{*}\right)_{n}\right)\right\| .
$$

According to the above theorem and Hahn-Banach theorem, we have the following result.
Corollary 3.11. Let $1 \leq p, q, s \leq+\infty$ such that $\frac{1}{q}+\frac{1}{s}=\frac{1}{p}$. For every $\left(x_{n}\right)_{n} \in \ell_{m(s, p)}(X)$ we have,

$$
\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{n(s, p)}(X)}=\sup _{\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\left.\ell_{q^{*}} s^{* *} X^{*}\right\rangle} \leq 1}\left|\sum_{n \geq 1} x_{n}^{*}\left(x_{n}\right)\right| .
$$

A direct consequence of Theorem 3.2 and Theorem 3.10 is the following.
Corollary 3.12. We have the two isometric isomorphism identifications
(i) $\ell_{p, q}\langle X\rangle^{* *} \equiv \ell_{p, q}\left\langle X^{* *}\right\rangle$.
(ii) $\ell_{m(s, p)}(X)^{* *} \equiv \ell_{m(s, p)}\left(X^{* *}\right)$.

Using the principle of local reflexivity and previous corollary we obtain the following results.
Proposition 3.13. Let X be a Banach space and $1 \leq p, q, s \leq+\infty$.

1. If $\frac{1}{p}=\frac{1}{q}+\frac{1}{s}$ and $\left(x_{n}^{*}\right)_{n} \in \ell_{m(s, p)}\left(X^{*}\right)$ then

$$
\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{m(s, p)}\left(X^{*}\right)}=\sup _{\left\|\left(x_{n}\right)_{n}\right\|_{q^{* * *}} s^{*}(x) \leq 1}\left|\sum_{n} x_{n}^{*}\left(x_{n}\right)\right| .
$$

2. If $\frac{1}{s^{*}}=\frac{1}{q^{*}}+\frac{1}{p^{*}}$ and $\left(x_{n}^{*}\right)_{n} \in \ell_{p, q}\left\langle X^{*}\right\rangle$ then

$$
\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{p, q}\left\langle X^{*}\right\rangle}=\sup _{\left\|\left(x_{n}\right)_{n}\right\|_{e_{m\left(q^{*}, s^{t}\right)}(x)} \leq 1}\left|\sum_{n} x_{n}^{*}\left(x_{n}\right)\right| .
$$

Proof. 1) Let $\left(x_{n}^{*}\right)_{n} \in \ell_{m(s, p)}\left(X^{*}\right)$. Since $\ell_{q^{*}, s^{*}}\langle X\rangle \subseteq \ell_{q^{*}, s^{*}}\left\langle X^{* *}\right\rangle \equiv\left(\ell_{q^{*}, s^{*}}\langle X\rangle\right)^{* *}$, we have

$$
\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\ell_{m(s, p)}\left(X^{*}\right)}=\sup _{\left\|\left(x_{n}^{* *}\right)_{n}\right\|_{q_{*^{*} s^{*}} s^{*}\left(X^{*}\right)} \leq 1}\left|\sum_{n} x_{n}^{* *}\left(x_{n}^{*}\right)\right| \geq \sup _{\left\|\left(x_{n}\right)_{n}\right\|_{q^{*}, s^{*}}(X) \leq 1}\left|\sum_{n} x_{n}^{*}\left(x_{n}\right)\right| .
$$

For the reverse inequality, let E be the linear space spanned by the finite $\operatorname{set}\left\{x_{1}^{* *}, \ldots, x_{N}^{* *}\right\} \subset X^{* *}$. By the principle of local reflexivity for each $\varepsilon>0$ there exists a bounded linear operator $u: E \longrightarrow X$ such that $\|u\| \leq 1$ and $\left|x_{j}^{* *}\left(x_{j}^{*}\right)-x_{j}^{*}\left(u\left(x_{j}^{* *}\right)\right)\right| \leq \frac{\varepsilon}{N}$ for all $x_{j}^{*} \in X^{*}, j=1, \ldots, N$. Then

$$
\begin{aligned}
\sum_{j \leq N}\left|x_{j}^{* *}\left(x_{j}^{*}\right)\right| & \leq \varepsilon+\sum_{j \leq N}\left|x_{j}^{*}\left(u\left(x_{j}^{* *}\right)\right)\right| \\
& \leq \varepsilon+\left\|\left(x_{n}^{* *}\right)_{n}\right\|_{\ell_{q^{*}, s^{*}}\left(X^{* *}\right)} \sup _{\left\|\left(x_{n}\right)_{n}\right\|_{q^{*} s^{*}(X)} \leq 1} \sum_{n \geq 1}\left|x_{n}^{*}\left(x_{n}\right)\right| .
\end{aligned}
$$

Since this holds for every $N \in \mathbb{N}$ and $\varepsilon>0$ it follows that

$$
\left\|\left(x_{n}^{*}\right)_{n}\right\|_{e_{m(s, s)}\left(X^{*}\right)}=\sup _{\left.\left\|\left(x_{n}^{* *}\right)_{n}\right\|_{q^{*}, s^{* *}} X^{* *}\right)} \sum_{n \geq 1}\left|x_{n}^{* *}\left(x_{n}^{*}\right)\right| \leq \sup _{\left\|\left(x_{n}\right)_{n}\right\|_{q_{q^{*}, s^{* *}}(X)}} \sum_{n \geq 1}\left|x_{n}^{*}\left(x_{n}\right)\right| .
$$

Part (2) is proved in a similar way.
Remark 3.14. If we apply Theorem 3.2 and Theorem 3.10 for some extreme cases of parameters p, q and s, we obtain the well-known duality identifications for the sequence spaces $\ell_{q}\langle X\rangle, \ell_{p}(X)$ and $\ell_{p, \omega}(X)$.
(i) In the Theorem 3.2 if we take $p=1$, then by (3) and (6) we obtain

$$
\left(\ell_{q}\langle X\rangle\right)^{*} \equiv\left(\ell_{1, q}\langle X\rangle\right)^{*} \equiv \ell_{m\left(q^{*}, q^{*}\right)}\left(X^{*}\right) \equiv \ell_{q^{*}, \omega}\left(X^{*}\right) .
$$

(ii) In the Theorem 3.2 if we take $p=s$, then by (4) and Corollary 3.4 we obtain

$$
\left(\ell_{p}(X)\right)^{*} \equiv\left(\ell_{p, 1}\langle X\rangle\right)^{*} \equiv \ell_{m\left(+\infty, p^{*}\right)}\left(X^{*}\right) \equiv \ell_{p^{*}}\left(X^{*}\right)
$$

(iii) In the Theorem 3.10 if we take $s=p$, then we obtain

$$
\left(\ell_{p, \omega}(X)\right)^{*} \equiv\left(\ell_{m(p, p)}(X)\right)^{*} \equiv \ell_{1, p^{*}}\left\langle X^{*}\right\rangle \equiv \ell_{p^{*}}\left\langle X^{*}\right\rangle
$$

In the following proposition we give the relation between the space of the strongly (q, s)-summable sequences and the spaces of the absolutely (strongly) p-summable sequences.

Proposition 3.15. Let $1 \leq p, q, s \leq \infty$ such that $1+\frac{1}{p}=\frac{1}{q}+\frac{1}{s}$ then

$$
\ell_{p}\langle X\rangle \subset \ell_{q, s}\langle X\rangle \subset \ell_{p}(X)
$$

In this case we have

$$
\left\|\left(x_{n}\right)_{n}\right\|_{e_{p}(X)} \leq\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{q, s}\langle X\rangle} \leq\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p}\langle X\rangle}
$$

for each $\left(x_{n}\right)_{n} \in \ell_{p}\langle X\rangle$.
Proof. Since $\frac{1}{p^{*}}=\frac{1}{q^{*}}+\frac{1}{s^{*}}$ we get $\ell_{p^{*}}\left(X^{*}\right) \subset \ell_{m\left(s^{*}, p^{*}\right)}\left(X^{*}\right) \subset \ell_{p^{*}, \omega}\left(X^{*}\right)$. Let $\left(x_{n}\right)_{n} \in \ell_{p}\langle X\rangle$. From the duality between $\ell_{p}(X)$ and $\ell_{p^{*}}\left(X^{*}\right)$ and equality (7), we obtain

$$
\begin{aligned}
\left\|\left(x_{n}\right)_{n}\right\|_{\rho_{p}(X)} & =\sup _{\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\rho_{p^{*}}\left(X^{*}\right)} \leq 1}\left|\sum_{n \geq 1} x_{n}^{*}\left(x_{n}\right)\right| \\
& \leq \sup _{\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\left.\left.\ell_{m\left(s^{*}, p^{*}\right)}\right)^{*}\right)} \leq 1}\left|\sum_{n \geq 1} x_{n}^{*}\left(x_{n}\right)\right| \\
& =\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p, s}(X\rangle} \\
& \leq \sup _{\left\|\left(x_{n}^{*}\right)_{n}\right\|_{\rho_{p^{*},\left(\omega^{*}\left(X^{*}\right)\right.} \leq 1}\left|\sum_{n \geq 1} x_{n}^{*}\left(x_{n}\right)\right|}=\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{p}\langle X\rangle}<\infty .
\end{aligned}
$$

Regarding Proposition 3.15 , let us show with an example the difference between $\ell_{q, s}\langle X\rangle$ and $\ell_{p}(X)$.

Example 3.16. Let $\left(e_{n}\right)_{n}$ the unit vector basis of ℓ_{2}. The sequence $\left(x_{n}\right)_{n}$ defined by $x_{n}=\frac{1}{\sqrt{n}} e_{n}$ belongs to $\ell_{\infty}\left(\ell_{2}\right)$ but it is not in $\ell_{2,2}\left\langle\ell_{2}\right\rangle$. In order to see this, $\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{\infty}\left(\ell_{2}\right)}=\sup _{n} \frac{1}{\sqrt{n}}=1$. On the other hand, since

$$
\left\|\left(e_{n}^{*}\right)_{n}\right\|_{\ell_{2, \omega}\left(e_{2}\right)}=\left\|\left(e_{n}\right)_{n}\right\|_{\ell_{2, \omega}\left(\ell_{2}\right)}=1
$$

we have that

$$
\left\|\left(x_{n}\right)_{n}\right\|_{\ell_{2,2}\left\langle\ell_{2}\right\rangle} \geq\left\|\left(e_{n}^{*}\left(x_{n}\right)\right)_{n}\right\|_{\ell_{2}}=\left(\sum_{n \geq 1} \frac{1}{n}\right)^{\frac{1}{2}}=+\infty .
$$

4. Applications to (r, p, q)-summing operators

Let $X \subset X^{\mathbb{N}}$ and $y \subset Y^{\mathbb{N}}$ be spaces of vector valued sequences in X and Y respectively. A linear continuous operator $T \in \mathcal{L}(X, Y)$, between Banach spaces, induces a linear operator \widehat{T} mapping X into $Y^{\mathbb{N}}$ in the following way: $\widehat{T}\left(\left(x_{n}\right)_{n}\right)=\left(T\left(x_{n}\right)\right)_{n}$ for all $\left(x_{n}\right)_{n} \in \mathcal{X}$. In the sequel, if $\widehat{T}(\mathcal{X}) \subset \mathcal{Y}$, we say that T transfers X into y.

Throughout this section, let $1 \leq p, q, r \leq \infty$ such that $\frac{1}{r} \leq \frac{1}{p}+\frac{1}{q}$. The definition of (r, p, q)-summing operators is due to Pietsch [9, Section 17.1]

Definition 4.1. An operator $T \in \mathcal{L}(X, Y)$ is (r, p, q)-summing, in symbols $T \in \Pi_{r, p, q}(X, Y)$, if there is $C>0$ such that

$$
\begin{equation*}
\left\|\left(y_{i}^{*}\left(T\left(x_{i}\right)\right)\right)_{1 \leq i \leq n}\right\|_{\ell_{r}} \leq C\left\|\left(x_{i}\right)_{1 \leq i \leq n}\right\|_{\ell_{p, \omega}(X)}\left\|\left(y_{i}^{*}\right)_{1 \leq i \leq n}\right\|_{\ell_{q, \omega}\left(Y^{*}\right)^{\prime}} \tag{11}
\end{equation*}
$$

for all $n \in \mathbb{N},\left(x_{i}\right)_{1 \leq i \leq n} \subset X$ and $\left(y_{i}^{*}\right)_{1 \leq i \leq n} \subset Y^{*}$.
This is equivalent to say that T induces a bounded bilinear map

$$
\bar{T}: \ell_{p, \omega}(X) \times \ell_{q, \omega}\left(Y^{*}\right) \longrightarrow \ell_{r}, \quad \bar{T}\left(\left(x_{n}\right)_{n},\left(y_{n}^{*}\right)_{n}\right)=\left(\left\langle x_{n}, y_{n}^{*}\right\rangle\right)_{n},
$$

(see [6, Page 196]). Note that $\Pi_{r, p, q}(X, Y)$ is a Banach space equipped with the norm $\pi_{r, p, q}(T)$ which is the smallest constant C satisfying the defining inequality or $\pi_{r, p, q}(T)=\|\bar{T}\|$.

As in the case of p-summing operators, the natural way of presenting the summability properties of (r, p, q)-summing operators is by defining the corresponding operator \widehat{T} between $\ell_{p, \omega}(X)$ and $\ell_{r, q^{*}}\langle Y\rangle$.
Proposition 4.2. The operator $T \in \mathcal{L}(X, Y)$ is (r, p, q)-summing if and only if T transfers $\ell_{p, \omega}(X)$ into $\ell_{r, q^{*}}\langle Y\rangle$.
Proof. Indeed, starting from (11) and pass to the limit for n tending to ∞ we obtain

$$
\begin{equation*}
\left\|\left(T\left(x_{n}\right)\right)_{n}\right\|_{\ell_{r, q}}\langle Y\rangle \leq \pi_{r, p, q}(T)\left\|\left(x_{n}\right)_{n}\right\|_{e_{p, \omega}(X)} \tag{12}
\end{equation*}
$$

for all $\left(x_{n}\right)_{n} \in \ell_{p, \omega}(X)$. Then it follows that $\widehat{T}: \ell_{p, \omega}(X) \longrightarrow \ell_{r, q^{*}}\langle Y\rangle$ is well-defined and $\widehat{T}\left(\ell_{p, \omega}(X)\right) \subset \ell_{r, q^{*}}\langle Y\rangle$. In addition \widehat{T} is continuous with norm $\leq \pi_{r, p, q}(T)$. Suppose conversely that T transfers $\ell_{p, \omega}(X)$ into $\ell_{r, q^{*}}\langle Y\rangle$, an appeal to the closed graph theorem shows that \widehat{T} is continuous and

$$
\left\|\left(T\left(x_{i}\right)\right)_{1 \leq i \leq n}\right\|_{\ell_{r, q^{*}}\langle Y\rangle} \leq\|\widehat{T}\|\left\|\left(x_{i}\right)_{1 \leq i \leq n}\right\|_{e_{p, \omega}(X)}
$$

and so $T \in \Pi_{r, p, q}(X, Y)$ with $\pi_{r, p, q}(T) \leq\|\widehat{T}\|$.

In the next result we give a new characterization of the (r, p, q)-summing operators by using the Banach spaces of strongly q^{*}-summable and mixed (p, s)-summable sequences obtaining in this way another corresponding operator \widehat{T} of the (r, p, q)-summing operator T.

Theorem 4.3. Let $p, q, r, s \geq 1$ such that $\frac{1}{s}=\frac{1}{r^{+}}+\frac{1}{p}$. The operator $T \in \mathcal{L}(X, Y)$ is (r, p, q)-summing if and only if there is a constant $C>0$ such that for any $x_{1}, \ldots, x_{n} \in X$ we have

$$
\begin{equation*}
\left\|\left(T\left(x_{i}\right)\right)_{1 \leq i \leq n}\right\|_{\ell_{q^{*}}\langle Y\rangle} \leq C\left\|\left(x_{i}\right)_{1 \leq i \leq n}\right\|_{\ell_{m(p, s)}(X)} \tag{13}
\end{equation*}
$$

Proof. Suppose that $T \in \Pi_{r, p, q}(X, Y)$. Let $\left(y_{i}^{*}\right)_{1 \leq i \leq n} \subset Y^{*},\left(x_{i}\right)_{1 \leq i \leq n} \subset X$ and $\varepsilon>0$. Choose $\left(\alpha_{i}\right)_{1 \leq i \leq n} \subset \mathbb{K}$ and $\left(z_{i}\right)_{1 \leq i \leq n} \subset X$ such that $x_{i}=\alpha_{i} z_{i}, i=1, \ldots, n$ and $\left\|\left(\alpha_{i}\right)_{1 \leq i \leq n}\right\|_{\ell_{r^{*}}}\left\|\left(z_{i}\right)_{1 \leq i \leq n}\right\|_{\ell_{p, \omega}(X)} \leq(1+\varepsilon)\left\|\left(x_{i}\right)_{1 \leq i \leq n}\right\|_{\ell_{m(p, s)}(X)}$. By Hölder's inequality we get

$$
\begin{aligned}
\left|\sum_{1 \leq i \leq n} y_{i}^{*}\left(T\left(x_{i}\right)\right)\right| & =\left|\sum_{1 \leq i \leq n} \alpha_{i} y_{i}^{*}\left(T\left(z_{i}\right)\right)\right| \\
& \leq\left\|\left(\alpha_{i}\right)_{1 \leq i \leq n}\right\|_{\ell_{r^{*}}}\left\|\left(y_{i}^{*}\left(T\left(z_{i}\right)\right)\right)\right\|_{\ell_{r}} \\
& \leq \pi_{r, p, q}(T)\left\|\left(\alpha_{i}\right)_{1 \leq i \leq n}\right\|_{\ell_{r^{*}}}\left\|\left(z_{i}\right)_{1 \leq i \leq n}\right\|_{\ell_{p, \omega}(X)}\left\|\left(y_{i}^{*}\right)_{1 \leq i \leq n}\right\|_{\ell_{q, \omega}\left(Y^{*}\right)} .
\end{aligned}
$$

By taking the supremum over all $\left(y_{i}^{*}\right)_{1 \leq i \leq n}$ such that $\left\|\left(y_{i}^{*}\right)_{1 \leq i \leq n}\right\|_{\ell_{q, \omega}\left(Y^{*}\right)} \leq 1$ we obtain

$$
\left\|\left(T\left(x_{i}\right)\right)_{1 \leq i \leq n}\right\|_{\ell_{q^{*}}\langle Y\rangle} \leq \pi_{r, p, q}(T)(1+\varepsilon)\left\|\left(x_{i}\right)_{1 \leq i \leq n}\right\|_{\ell_{m(p, s)}(X)} .
$$

Since this holds for every $\varepsilon>0$, we obtain (13).
Suppose conversely that the operator T satisfies the condition (13). For all $\left(y_{i}^{*}\right)_{1 \leq i \leq n} \subset Y^{*},\left(x_{i}\right)_{1 \leq i \leq n} \subset X$ and $\left(\alpha_{i}\right)_{1 \leq i \leq n} \subset \mathbb{K}$ we have

$$
\begin{aligned}
\left|\sum_{1 \leq i \leq n} \alpha_{i} y_{i}^{*}\left(T\left(x_{i}\right)\right)\right| & =\left|\sum_{1 \leq i \leq n} y_{i}^{*}\left(T\left(\alpha_{i} x_{i}\right)\right)\right| \\
& \leq\left\|\left(y_{i}^{*}\right)_{1 \leq i \leq n}\right\|_{\ell_{q, \omega}\left(Y^{*}\right)}\left\|\left(T\left(\alpha_{i} x_{i}\right)\right)_{1 \leq i \leq n}\right\|_{\ell_{q^{*}}(Y\rangle} \\
& \leq C\left\|\left(y_{i}^{*}\right)_{1 \leq i \leq n}\right\|_{\ell_{q, \omega}\left(Y^{*}\right)}\left\|\left(\alpha_{i} x_{i}\right)_{1 \leq i \leq n}\right\|_{\ell_{m(p, s)}(X)} \\
& \leq C\left\|\left(y_{i}^{*}\right)_{1 \leq i \leq n}\right\|_{\ell_{q, \omega}\left(Y^{*}\right)}\left\|\left(\alpha_{i}\right)_{1 \leq i \leq n}\right\|\left\|_{\ell_{r^{*}}}\right\|\left(x_{i}\right)_{1 \leq i \leq n} \|_{\ell_{p, \omega}(X)}
\end{aligned}
$$

Taking the supremum over all $\left(\alpha_{i}\right)_{1 \leq i \leq n} \subset \mathbb{K}$ such that $\left\|\left(\alpha_{i}\right)_{1 \leq i \leq n}\right\|_{\ell_{r^{*}}} \leq 1$ we get

$$
\left\|\left(y_{i}^{*}\left(T\left(x_{i}\right)\right)\right)_{1 \leq i \leq n}\right\|_{\ell_{r}} \leq C\left\|\left(x_{i}\right)_{1 \leq i \leq n}\right\|_{\ell_{p, \omega}(X)}\left\|\left(y_{i}^{*}\right)_{1 \leq i \leq n}\right\|_{\ell_{q, \omega}\left(Y^{*}\right)} .
$$

The next corollary and its proof are similar to Proposition 4.2 except that (13) is used instead of (12).
Corollary 4.4. $T \in \Pi_{r, p, q}(X, Y)$ if and only if T transfers $\ell_{m(p, s)}(X)$ into $\ell_{q^{*}}\langle Y\rangle$. In addition we have $\pi_{r, p, q}(T)=\|\widehat{T}\|$.
Although the following result is essentially already known (it was proved by Pietsch, see [9, Theorem 17.1.5]), we write a new direct proof that highlights the role of the dual space of $\ell_{m(s, p)}(X)$ and $\ell_{p, q}\langle X\rangle$.

By using the above corollary, Proposition 4.2, the identifications $\left(\ell_{m(p, s)}(X)\right)^{*} \equiv \ell_{r, p^{*}}\left\langle X^{*}\right\rangle$ and $\left(\ell_{q^{*}}\langle Y\rangle\right)^{*} \equiv$ $\ell_{q, \omega}\left(Y^{*}\right)$ and taking into account that the adjoint of the operator $\widehat{T}: \ell_{m(p, s)}(X) \longrightarrow \ell_{q^{*}}\langle Y\rangle$ can be identified with the operator

$$
\widehat{T^{*}}: \ell_{q, \omega}\left(Y^{*}\right) \longrightarrow \ell_{r, p^{*}}\left\langle X^{*}\right\rangle ; \quad \widehat{T^{*}}\left(\left(y_{i}^{*}\right)_{i}\right)=\left(T^{*}\left(y_{i}^{*}\right)\right)_{i}
$$

we have the following.
Theorem 4.5. The operator T belongs to $\Pi_{r, p, q}(X, Y)$ if and only if T^{*} belongs to $\Pi_{r, q, p}\left(Y^{*}, X^{*}\right)$. Furthermore, $\pi_{r, p, q}(T)=$ $\pi_{r, q, p}\left(T^{*}\right)$.

It is easy to prove the following result.
Corollary 4.6. The operator T belongs to $\Pi_{r, p, q}(X, Y)$ if and only if its bi-adjoint $T^{* *}$ belongs to $\Pi_{r, p, q}\left(X^{* *}, Y^{* *}\right)$. In addition, $\pi_{r, p, q}(T)=\pi_{r, p, q}\left(T^{* *}\right)$.

References

[1] H. Apiola, Duality between spaces of p-summable sequences, (p, q)-summing operators and characterizations of nuclearity, Mathematische Annalen 219 (1976) 53-64.
[2] J.L. Arregui and O. Blasco, (p, q)-summing sequences, Journal of Mathematical Analysis and Applications 274 (2002) 812-827.
[3] Q. BU and J. Diestel, Observations about the projective tensor product of Banach spaces I-, Quaestiones Mathematicae, 24 (2001) 519-533.
[4] J.S. Cohen, Absolutely p-summing, p-nuclear operators and their conjugates, Mathematische Annalen 201 (1973) 177--200.
[5] J.S. Cohen, Absolutely p-summing, p-nuclear operators and their conjugates, Dissertation, University of Maryland College Park Md Jan 1970.
[6] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge University Press. 1995.
[7] R. Khalil, On some Banach space sequences, Bulletin of the Australian Mathematical Society 15 (1982) 231-241.
[8] Mário C. Matos, Mappings between Banach spaces that send mixed summable sequences into absolutely summable sequences, Journal of Mathematical Analysis and Applications 297 (2004) 833-851.
[9] A. Pietsch, Operator ideals, North Holland Mathematical Library 20, 1980.

[^0]: 2010 Mathematics Subject Classification. Primary 46A45; Secondary 46B45, 46B10
 Keywords. Mixed (s, p)-summable sequences, Strongly (p, q)-summable sequences, Dual sequences spaces, (r, p, q)-summing operators

 Received: 17 November 2019; Accepted: 31 January 2020
 Communicated by Ivana Djolović
 The authors acknowledges with thanks the support of the La Direction Générale de la Recherche Scientifique et du Développement Technologique. MESRS, Algeria.

 Email addresses: rachid.soualmia@univ-msila.dz (Rachid Soualmia), dahmane.achour@univ-msila.dz (Dahmane Achour), hajdahia@gmail.com (Elhadj Dahia)

