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Abstract

In this paper we introduce the concept of Lipschitz Pietsch-p-integral

mappings, (1 ≤ p ≤ ∞), between a metric space and a Banach space.

We represent these mappings by an integral with respect to a vector

measure defined on a suitable compact Hausdorff space, obtaining in

this way a rich factorization theory through the classical Banach spaces

C(K), Lp(µ,K) and L∞(µ,K). Also we show that this type of opera-

tors fits in the theory of composition Banach Lipschitz operator ideals.

For p = ∞, we characterize the Lipschitz Pietsch-∞-integral mappings

by a factorization schema through a weakly compact operator. Finally,

the relationship between these mappings and some well known Lipschitz

operators is given.
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Introduction

The class of p-integral linear operators was introduced in 1969 by Persson
and Pietsch [18] (also known as strictly p-integral or Pietsch-p-integral op-
erators) establishing many of its fundamental properties using the theory of
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vector measures. In 1989, Cardassi studied the factorization properties and
some results of coincidences for these operators in [6]. The ideal of p-integral
polynomials on Banach spaces has been defined and characterized by Cilia and
Gutiérrez, in [9] for p = 1 and in [8] for p ≥ 1, as a natural polynomial extension
of Pietsch-p-integral operators.

In this paper we introduce and study the Lipschitz version of this concept.
We define the Lipschitz Pietsch-p-integral operator (1 ≤ p ≤ ∞) as a Lipschitz
mapping between a pointed metric space and a Banach space by an integral
representation with respect to a vector measure on the Borel σ-algebra of a
compact Hausdorff space K. Special attention is paid to the factorization of
these mappings and we compare our class with some well known Lipschitz
operators defined by a factorization schema or by summability of series. Note
that the class of Lipschitz Pietsch-1-integral operators is studied in [5]. In this
case, the authors use only factorization schemes to define this concept without
using vector measure theory.

We describe now the contents of the present paper. After this introduction,
in section one we fix notation and basic concepts related to Lipschitz mappings
and vector measure of interest for our purposes. In section two we extend to
Lipschitz mappings the concept of Pietsch-p-integral operators for p ≥ 1 and
we prove a factorization theorem for these mappings through the classical Ba-
nach spaces C(K) and Lp(µ,K). The third section is devoted to study the
notion of Lipschitz Pietsch-∞-integral operators, starting from the representa-
tion by a vector measure, we present a characterization given by a factorization
through a linear weakly compact operator. Finally, in section four we establish
the relationship between our class and the class of Lipschitz p-summing opera-
tors, Lipschitz Grothendieck-p-integral operators, strongly Lipschitz p-nuclear
operators and Lipschitz weakly compact operators.

1. Notation and preliminaries

The notation used in the paper is in general standard. E and F are real
Banach spaces. X,Y and Z will be pointed metric spaces with a base point
denoted by 0 and a metric denoted by d. Given a Banach space E, E∗ denotes
its topological dual, and BE its closed unit ball. As usual, L(E,F ) denotes
the space of all continuous linear operators from E to F with the operator
norm. A Banach space E will be considered as a pointed metric space with
distinguished point 0 and distance d(x, y) = ‖x− y‖. With Lip0(X,E) we
denote the Banach space of all Lipschitz mappings from X to E, taking 0 into
0, under the Lipschitz norm

Lip(T ) = inf {C > 0 : ‖T (x)− T (x′)‖ ≤ Cd(x, x′)} .

Moreover, T is called an isometric embedding if ‖T (x)− T (x′)‖ = d(x, x′) for
all x, x′ ∈ X .
When E = R, Lip0(X,R) is denoted by X# and it is called the Lipschitz dual
of X. Along the paper we consider BX# endowed with the pointwise topology
(BX# is a compact Hausdorff space in this topology).
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It is well know that X# has a predual, namely the space of Arens and Eells
Æ(X) of the metric space X [2] (also known as the Lipschitz-free Banach space
F(X) of X [14]). This space is one of the main tools that we will use in the
sequel. We summarize some basic properties of Æ(X). A molecule on X is a
scalar valued function m on X with finite support that satisfies

∑
x∈X

m (x) = 0.

We denote byM(X) the linear space of all molecules on X . For x, x′ ∈ X the
molecule mxx′ is defined by mxx′ = χ{x}−χ{x′}, where χA is the characteristic

function of the set A. For m ∈ M(X) we can write m =
n∑

i=1

λimxix
′

i
for some

suitable scalars λi, and we write

‖m‖M(X) = inf

{
n∑

i=1

|λi| d(xi, x
′
i), m =

n∑

i=1

λimxix
′

i

}
,

where the infimum is taken over all representations of the molecule m. Denote
by Æ(X) the completion of the normed space (M(X), ‖.‖M(X)). The map

kX : X →Æ(X) defined by kX(x) = mx0 isometrically embeds X in Æ(X).
For any T ∈ Lip0(X,E) there exists a unique linear map TL ∈ L(Æ (X) , E)
such that T = TL ◦ kX , i.e. the following diagram commutes

X
T //

kX

��

E

Æ(X) .

TL

;;
①
①
①
①
①
①
①
①
①

Moreover, ‖TL‖ = Lip(T ) (see [19, Theorem 2.2.4 (b)]). The operator TL is
referred to as the linearization of T .

The correspondence T ←→ TL establishes an isometric isomorphism between
the Banach spaces Lip0(X,E) and L(Æ (X) , E). In particular, the spaces
X# and Æ(X)∗ are isometrically isomorphic via the linearization R(f) := fL,
where fL(m) =

∑
x∈X

f(x)m(x), in particular fL(mxx′) = f(x) − f(x′), (see [19,

Theorem 2.2.2]).
Now we recall some simple notions from vector measure theory. Let (Ω,Σ)

be a measurable space and E a Banach space. Let m : Σ −→ E be a countably
additive vector measure [11, Definition I.1.1]. For every x∗ ∈ E∗, let 〈m,x∗〉 be
the scalar signed measure defined by 〈m,x∗〉 (A) := 〈m(A), x∗〉 for all A ∈ Σ.
The semivariation of m is the subadditive real bounded set function ‖m‖ : A ∈
Σ −→ ‖m‖ (A) ∈ [0,+∞) defined by

‖m‖ (A) = sup {|〈m,x∗〉| (A) : ‖x∗‖ ≤ 1} ,

where |〈m,x∗〉| is the variation measure of the signed measure 〈m,x∗〉.
According to [17, Page 106] and [16, Definition 2.1], a measurable (scalar

valued) function f is integrable with respect to m if

• It is integrable with respect to the scalar measure 〈m,x∗〉 for every
x∗ ∈ E∗.
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• For every A ∈ Σ there exists an element mf (A) ∈ E satisfying

〈mf (A), x
∗〉 =

∫

A

fd 〈m,x∗〉 , x∗ ∈ E∗.

We will use the classical notation

mf (A) :=

∫

A

fdm, A ∈ Σ.

For the general theory of vector measures we refer the reader to the classical
monograph [11].

For 1 ≤ p ≤ ∞, linear Pietsch-p-integral operators were introduced by
Persson and Pietsch [18] and deeply studied in [6, 10] among others.

Definition 1.1. The linear operator u : E −→ F , between Banach spaces, is
Pietsch-p-integral (1 ≤ p < ∞) if there are a regular Borel countably additive
vector measure m of bounded semivariation on B(BE∗), (where B(BE∗) is the
Borel σ-algebra of BE∗), and a positive regular Borel measure µ on BE∗ such
that

u (x) =

∫

BE∗

〈x, x∗〉 dm(x∗), x ∈ E,

and ∥∥∥∥
∫

BE∗

fdm

∥∥∥∥ ≤
(∫

BE∗

|f |p dµ

) 1
p

, f ∈ C(BE∗).

The Banach space of these operators is denoted by PIp(E,F ) under the

norm defined by ‖u‖PIp
= inf µ(BE∗)

1
p , where the infimum is taken over all

measures µ satisfying the above inequality.
For p =∞, u is called Pietsch-∞-integral if there is a regular Borel countably

additive vector measure m : B(BE∗) −→ F of bounded semivariation such that

u (x) =

∫

BE∗

〈x, x∗〉 dm(x∗), x ∈ E.

In this case, ‖T ‖PIL
∞

= inf ‖m‖ (BE∗), taking the infimum over all m that

satisfy the above equality.
In [18, Satz 15 and Satz 17] we find some canonical linear Pietsch-p-integral

operators that will be used in the sequel. Let K be a compact Hausdorff space
and ν be a positive regular Borel measure on K. Let (Ω,Σ, µ) be a finite
measure space and jp, ip be the inclusions of C(K) into Lp(K, ν) and of L∞(µ)
into Lp(µ) respectively for 1 ≤ p < ∞. Then jp ∈ PIp(C(K), Lp(K, ν)) and

ip ∈ PIp(L∞(µ), Lp(µ)) with ‖jp‖PIp
= ‖jp‖ = ν(K)

1
p and ‖ip‖PIp

= ‖ip‖ =

µ(Ω)
1
p .

Remark 1.2. Note that by using [8, Theorem 2.5], u ∈ PIp (E,F ) if and only
if there are a compact Hausdorff space K, an embedding h : E −→ C(K), a
regular Borel countably additive vector measure m : B(K) −→ F of bounded
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semivariation and a positive regular Borel measure µ on K such that for all
x ∈ E,

u(x) =

∫

K

h (x) dm,

and

∥∥∥∥
∫

K

fdm

∥∥∥∥ ≤
(∫

K

|f |p dµ

) 1
p

for all f ∈ C (K). In this case

‖u‖PIp
= inf ‖h‖µ(K)

1
p ,

where the infimum is taken over all K, m and h as above.

2. Lipschitz Pietsch-p-integral operators

Definition 2.1. Let X be a pointed metric space, E a Banach space and
let T ∈ Lip0(X,E). For 1 ≤ p < ∞, the mapping T is said to be Lipschitz
Pietsch-p-integral operator if there are a regular Borel probability measure
space (Ω,Σ, µ), a linear operator A ∈ L(Lp(µ), E) and a Lipschitz operator
B ∈ Lip0(X,L∞(µ)) giving rise to the following commutative diagram

(2.1) X

B

��

T // E

L∞(µ)
ip // Lp(µ).

A

OO

where ip : L∞(µ) −→ Lp(µ) is the canonical mapping. The set of all Lipschitz

Pietsch-p-integral mappings from X to E is denoted by PILp (X,E). With

each T ∈ PILp (X,E) we associate its Lipschitz Pietsch-p-integral quantity,
‖T ‖PIL

p
= inf ‖A‖Lip(B), where the infimum is taken over all µ, A and B as

above.

Remark 2.2.

(1) As an easy consequence of the definition, if T ∈ PILp (X,E) we have
Lip(T ) ≤ ‖T ‖PIL

p
.

(2) Notice that the definition is the same if we consider a finite regular

Borel measure space (Ω,Σ, µ), in this case, for T ∈ PILP (X,E) we
have

‖T ‖PIL
P
= inf ‖A‖µ(Ω)

1
pLip(B),

where the infimum is taken over all µ, A and B in (2.1 ).
(3) We don’t know if being Lipschitz Pietsch-p-integrability implies Pietsch-

p-integrability whenever the mapping T is linear. The converse is
of course clearly true, that is if E and F are Banach spaces and
T : E −→ F is linear Pietsch-p-integral then T is Lipschitz Pietsch-p-
integral and ‖T ‖PIL

p
≤ ‖T ‖PIp

.

We have the following immediate consequence of the definition above.
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Proposition 2.3 (Inclusion Theorem). Let 1 ≤ p ≤ q <∞. Then PILp (X,E) ⊂

PILq (X,E) and ‖T ‖PIL
q
≤ ‖T ‖PIL

p
for all T ∈ PILp (X,E).

In order to prove the factorization theorem for the class of Lipschitz Pietsch-
p-integral operators, (1 ≤ p ≤ ∞) we need the following technical lemma.

Lemma 2.4. Let J :M(X) −→ C(BX#) be the operator defined by

J(m)(f) =

n∑

i=1

λi(f(xi)− f(x′
i)),

for all m =
∑n

i=1 λimxix
′

i
∈ M(X) and f ∈ BX# . Then this operator is an

isometric embedding.

Proof. Since Æ(X)∗ and X# are isometrically isomorphic via the linearization,
for all f ∈ X# there is m

∗ ∈ Æ(X)
∗
such that fL = m

∗. For all m ∈ M(X)
we have

‖J(m)‖C(B
X# ) = sup

f∈B
X#

|J(m)(f)| = sup
‖fL‖≤1

∣∣∣∣∣

n∑

i=1

λi(fL(mxix
′

i
)

∣∣∣∣∣
= sup

‖m∗‖≤1

|〈m,m∗〉| = ‖m‖Æ(X) = ‖m‖M(X) ,

and the proof follows. �

For x ∈ X , we denote by δx the functional δx : X# −→ R defined as
δx(f) = f(x), f ∈ X#. Let ιX : X −→ C(BX#) the natural Lipschitz isometric
embedding such that ιX(x) is the restriction of δx to BX# , for all x ∈ X.

The following theorem gives a parallel development of the factorization
schemes concerning Lipschitz Pietsch-p-integral operators that highlights the
role of the space C (BX#).

Theorem 2.5. Let 1 ≤ p < ∞ and let T ∈ Lip0(X,E). Then T is Lipschitz
Pietsch-p-integral if and only if there exist a regular Borel probability measure
ν on BX# and an operator Ã ∈ L(Lp(ν), E) such that the following diagram
commutes

(2.2) X

ιX

��

T // E

C (BX#)
jp // Lp(ν)

Ã

OO ,

where jp is the canonical map. Moreover,

‖T ‖PIL
p
= inf

{∥∥∥Ã
∥∥∥ : T = Ã ◦ jp ◦ ιX

}
.

Proof. We write △ for the proposed infimum. Suppose that T admits a fac-
torization (2.2). If j∞ is the canonical inclusion map from C (BX#) to L∞(ν),
we have the factorization

T = Ã ◦ ip ◦ j∞ ◦ ιX : X
ιX−→ C (BX#)

j∞
−→ L∞(ν)

ip
−→ Lp(ν)

Ã
−→ E.
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Denoting by B = j∞ ◦ ιX , it follows that B ∈ Lip0(X,L∞(ν)) and Lip(B) ≤ 1,
which implies that T is Lipschitz Pietsch-p-integral and

‖T ‖PIL
p
≤

∥∥∥Ã
∥∥∥Lip(B) ≤

∥∥∥Ã
∥∥∥ .

Passing to the infimum we get ‖T ‖PIL
p
≤ △.

Conversely, suppose that T ∈ PILp (X,E). Fix ε > 0, there are a regular
Borel probability measure space (Ω,Σ, µ), an operator A ∈ L(Lp(µ), E) and a
Lipschitz mapping B ∈ Lip0(X,L∞(µ)) such that

T = A ◦ ip ◦B : X
B
−→ L∞(µ)

ip
−→ Lp(µ)

A
−→ E,

and ‖A‖Lip(B) ≤ ‖T ‖PIL
p
+ε. Let BL ∈ L(Æ(X), L∞(µ)) be the linearization

of the Lipschitz mapping B, that is B = BL◦kX and ‖BL‖ = Lip(B). Consider
the natural extension of the isometric embedding J,mentioned in Lemma 2.4, to
Æ(X) which we denote also by J. The injectivity of L∞(µ) assures the existence

of an operator B̃L ∈ L(C(BX#), L∞(µ)) that extends BL with
∥∥∥B̃L

∥∥∥ = ‖BL‖,

that is BL = B̃L ◦ J or the following diagram commutes

Æ (X)
BL //

J

��

L∞(µ)

C(BX#)
B̃L

99
s
s
s
s
s
s
s
s
s

.

The operator ip : L∞(µ) −→ Lp(µ) is p -summing with p-summing norm

one then ip ◦ B̃L is too with πp(ip ◦ B̃L) ≤
∥∥∥B̃L

∥∥∥. By [10, Corollary 2.15]

there exist a regular Borel probability measure ν on BX# and an operator
S ∈ L(Lp(ν), Lp(µ)) such that

ip ◦ B̃L = S ◦ jp : C (BX#)
jp
−→ Lp(ν)

S
−→ Lp(µ),

and πp(ip ◦ B̃L) = ‖S‖ . Then

T = (A ◦ S) ◦ jp ◦ (J ◦ kX) : X
J◦kX−→ C (BX#)

jp
−→ Lp(ν)

A◦S
−→ E.

Easy calculations prove that J ◦ kX = ιX , which implies that T admits a
factorization of the form (2.2) with Ã = A ◦ S and we have

△ ≤
∥∥∥Ã

∥∥∥ ≤ ‖A‖πp(ip ◦ B̃L)

≤ ‖A‖
∥∥∥B̃L

∥∥∥ = ‖A‖Lip(B) ≤ ‖T ‖PIL
p
+ ε.

Since this holds for all ε > 0 we arrive at △ ≤ ‖T ‖PIL
p
. �

The next theorem is the main result of this section and provides a character-
ization of the class of Lipschitz Pietsch-p-integral operators, that is an integral
representation with respect to a vector measure.
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Theorem 2.6. Let 1 ≤ p < ∞ and let T ∈ Lip0(X,E). Then T is Lips-
chitz Pietsch-p-integral if and only if there are a compact Hausdorff space K,

a Lipschitz embedding φ : X −→ C(K) with φ(0) = 0, a regular Borel count-
ably additive vector measure m : B(K) −→ E of bounded semivariation and a
positive regular Borel measure µ on K such that

(2.3) T (x) =

∫

K

φ (x) dm, x ∈ X,

and

(2.4)

∥∥∥∥
∫

K

fdm

∥∥∥∥ ≤
(∫

K

|f |p dµ

) 1
p

,

for all f ∈ C (K) . In this case ‖T ‖PIL
p

= inf
{
Lip(φ)µ (K)

1
p

}
, where the

infimum is taken over all K, φ, m and µ satisfying (2.3) and (2.4).

Proof. Suppose that T ∈ PILp (X,E), and fix ε > 0. There are a regular Borel

probability measure ν on BX# and Ã ∈ L(Lp (ν) , E) such that

T = Ã ◦ jp ◦ ιX : X
ιX−→ C (BX#)

jp
−→ Lp(ν)

Ã
−→ E,

and
∥∥∥Ã

∥∥∥ ≤ ‖T ‖PIL
p
+ε. The linear operator Ã◦ jp : C (BX#) −→ E is Pietsch-

p-integral with∥∥∥Ã ◦ jp
∥∥∥
PIp

≤
∥∥∥Ã

∥∥∥ ‖jp‖PIp
≤

∥∥∥Ã
∥∥∥ ≤ ‖T ‖PIL

p
+ ε.

By Remark 1.2, there are a compact Hausdorff space K, an embedding h :
C (BX#) −→ C(K), a regular Borel countably additive vector measure m :
B(K) −→ E of bounded semivariation and a positive regular Borel measure µ

on K such that for all x ∈ X,

T (x) = Ã ◦ jp (ιX(x)) =

∫

K

h (ιX(x)) dm,

∥∥∥∥
∫

K

fdm

∥∥∥∥ ≤
(∫

K

|f |p dµ

) 1
p

for all f ∈ C (K) and ‖h‖µ (K)
1
p ≤

∥∥∥Ã ◦ jp
∥∥∥
PIp

+

ε. Which means that (2.3) and (2.4) are true by taking into account that
φ = h ◦ ιX is a Lipschitz embedding from X to C(K) vanishing at 0 with
Lip(φ) ≤ ‖h‖ . Moreover

Lip(φ)µ (K)
1
p ≤

∥∥∥Ã ◦ jp
∥∥∥
PIp

+ ε ≤ ‖T ‖PIL
p
+ 2ε.

Since this holds for every ε > 0, it follows that Lip(φ)µ (K)
1
p ≤ ‖T ‖PIL

p
.

Conversely, suppose that T satisfies the conditions (2.3) and ( 2.4). By

[11, Theorem VI.2.1] there exists u ∈ L(C (K) , E) such that u(f) =

∫

K

fdm,

f ∈ C (K) . Consider the canonical mapping

jp = ip ◦ j∞ : C (K)
j∞
−→ L∞ (K,µ)

ip
−→ Lp (K,µ) ,
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and define R : jp (C (K)) −→ E by R (jp (f)) := u(f). The linear mapping R

is well-defined and continuous with norm ≤ 1 since for all f ∈ C (K) ,

‖R (jp (f))‖ =

∥∥∥∥
∫

K

fdm

∥∥∥∥ ≤
(∫

K

|f |p dµ

) 1
p

= ‖jp (f)‖ .

By [12, Lemma IV.8.19] we have jp (C (K)) = Lp (K,µ) , so R can be extended

to a continuous linear operator R̃ : Lp (K,µ) −→ E with
∥∥∥R̃

∥∥∥ ≤ 1. If we put

B = j∞ ◦ φ, we obtain B ∈ Lip0(X,L∞ (K,µ)) and Lip(B) ≤ Lip(φ). On the
other hand,

R̃ ◦ ip ◦B(x) = R̃ ◦ jp ◦ φ(x) = u(φ(x)) =

∫

K

φ(x)dm = T (x),

and therefore T factors as in (2.1), that is T ∈ PILp (X,E) with

‖T ‖PIL
p
≤ Lip(B)

∥∥∥R̃
∥∥∥µ (K)

1
p ≤ Lip(φ)µ (K)

1
p .

�

Now we present a relationship between the Lipschitz Pietsch-p-integral op-
erator and its linearization.

Theorem 2.7. Let T ∈ Lip0(X,E) and 1 ≤ p < ∞. Then T ∈ PILp (X,E) if
and only if TL ∈ PIp(Æ (X) , E). Moreover, we have

(2.5) ‖T ‖PIL
p
= ‖TL‖PIp

.

Proof. Suppose that TL ∈ PIp(Æ (X) , E). According to [18, Satz 18], for every
ε > 0 we can choose a typical factorization of TL

TL = A ◦ ip ◦B : Æ (X)
B
−→ L∞ (µ)

ip
−→ Lp (µ)

A
−→ E,

such that A ∈ L(Lp (µ) , E) and B ∈ L(Æ (X) , L∞ (µ)) with ‖A‖ ‖B‖ ≤
‖TL‖PIp

+ε. It is clear that the mappingR := B◦kX belongs to Lip0 (X,L∞ (µ))

and Lip(R) ≤ ‖B‖. The factorization T = TL ◦ kX = A ◦ ip ◦ R implies that

T ∈ PILp (X,E) and

‖T ‖PIL
p
≤ ‖A‖Lip (R) ≤ ‖TL‖PIp

+ ε.

Conversely, if T ∈ PILp (X,E), for ε > 0 choose the following factorization of
T

T = A ◦ ip ◦B : X
B
−→ L∞ (µ)

ip
−→ Lp (µ)

A
−→ E,

such that A ∈ L(Lp (µ) , E) and B ∈ Lip0(X,L∞ (µ)) with ‖A‖Lip(B) ≤
‖T ‖PIL

p
+ ε. The uniqueness of the linearization maps gives that

TL = (A ◦ ip ◦B)L = A ◦ ip ◦BL.

Then, we have that TL ∈ PIp(Æ (X) , E) with

‖TL‖PIp
≤ ‖A‖ ‖BL‖ = ‖A‖Lip(B) ≤ ‖T ‖PIL

p
+ ε.

The proof concludes. �
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The notion of Lipschitz operator ideal was introduced by Achour, Rueda,
Sánchez-Pérez and Yahi [1]. This can be seen as an extension of the notion of
linear Banach operator ideal. A Lipschitz operator ideal ILip is a subclass of
Lip0 such that for every pointed metric space X and every Banach space E

the components
ILip(X,E) := Lip0(X,E) ∩ ILip

satisfy

(i) ILip(X,E) is a linear subspace of Lip0(X,E).
(ii) vg ∈ ILip(X,E) for v ∈ E and g ∈ X#.
(iii) The ideal property: if S ∈ Lip0(Y,X), T ∈ ILip(X,E) and w ∈

L(E,F ), then the composition wTS is in ILip(Y, F ).

A Lipschitz operator ideal ILip is a normed (Banach) Lipschitz operator
ideal if there is a function ‖.‖ILip

: ILip −→ [0,+∞[ that satisfies

(i’) For every pointed metric space X and every Banach space E, the pair
(ILip(X,E), ‖.‖ILip

) is a normed (Banach) space and Lip(T ) ≤ ‖T ‖ILip

for all T ∈ ILip(X,E).
(ii’) ‖IdK : K −→ K, IdK(λ) = λ‖ILip

= 1.

(iii’) If S ∈ Lip0(Y,X), T ∈ ILip(X,E) and w ∈ L(E,F ), then ‖wTS‖ILip
≤

Lip(S) ‖T ‖ILip
‖w‖ .

Following [1, Definition 3.1], there is a way to construct a (Banach) Lips-
chitz operator ideal from a (Banach) linear operator ideal, called composition
method. Let A be a (Banach) linear operator ideal. A Lipschitz mapping
T ∈ Lip0(X,E) belongs to the composition Lipschitz operator ideal A ◦ Lip0
if there exists a Banach space F, a Lipschitz operator S ∈ Lip0(X,F ) and a
linear operator u ∈ A(F,E) such that T = u ◦ S. If (A, ‖.‖A) is a Banach
operator ideal we write

‖T ‖A◦Lip0
= inf ‖u‖A Lip(S),

where the infimum is taken over all u and S as above.
In [1], the authors establish a criterion to decide whenever a Lipschitz oper-

ator ideal is of composition or not.

Proposition 2.8 ([1, Proposition 3.2]). Let X be a pointed metric space, E a
Banach space and A an operator ideal. A Lipschitz operator T ∈ Lip0(X,E) be-
longs to A◦Lip0(X,E) if and only if its linearization TL belongs to A(F(X), E).

Furthermore, if (A, ‖·‖A) is a Banach operator ideal then (A◦Lip0, ‖·‖A◦Lip0
)

is Banach Lipschitz operator ideal with

‖T ‖A◦Lip0
= ‖TL‖A .

By Theorem 2.7 and the above criterion, we have the following.

Proposition 2.9.
(
PILp , ‖·‖PIL

p

)
is the Banach Lipschitz operator ideal gen-

erated by the composition method from the Banach operator ideal PIp. In other
words

PILp (X,E) = PIp ◦ Lip0(X,E) isometrically
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for every pointed metric space X and every Banach space E.

We say that a pointed metric spaceW is 1-injective (or an absolute Lipschitz
retract) if for every metric space X , every subset X0 of X and every Lipschitz

mapping T ∈ Lip0(X0,W ) there is a Lipschitz mapping T̃ ∈ Lip0(X,W ) ex-

tending T with Lip(T ) = Lip(T̃ ). The real Banach space L∞(µ) for a finite
measure µ is 1-injective (see [4, Chapter 1]).

By the typical Pietsch-p-integral factorization of a Lipschitz mapping T , we

can find a Pietsch-p-integral extension T̃ .

Proposition 2.10. Let X and Z be pointed metric spaces with X ⊂ Z and let
E be a Banach space. Each Lipschitz Pietsch-p-integral operator T : X −→ E

admits a Lipschitz Pietsch-p-integral extension T̃ : Z −→ E with ‖T ‖PIL
p
=∥∥∥T̃

∥∥∥
PIL

p

.

Proof. If T ∈ PILp (X,E), then for all ε > 0 there are a regular Borel probability
measure space (Ω,Σ, µ), A ∈ L(Lp(µ), E) and B ∈ Lip0(X,L∞(µ)) such that

T = A ◦ ip ◦B : X
B
−→ L∞(µ)

ip
−→ Lp(µ)

A
−→ E,

and Lip(B) ‖A‖ ≤ ‖T ‖PIL
p
+ ε. Since L∞(µ) is 1-injective, B admits an ex-

tension B̃ ∈ Lip0(Z,L∞(µ)) with Lip(B̃) = Lip(B) i.e., the following diagram
commutes

X
B //

i

��

L∞(µ)

Z.

B̃

;;
①
①
①
①
①
①
①
①

,

where i ∈ Lip0(X,Z) is the natural isometric embedding. This creates a Lip-

schitz Pietsch-p-integral extension T̃ : Z −→ E of T having the following
factorization

T̃ = A ◦ ip ◦ B̃ : Z
B̃
−→ L∞(µ)

ip
−→ Lp(µ)

A
−→ E.

Furthermore,
∥∥∥T̃

∥∥∥
PIL

p

≤ Lip(B̃) ‖A‖ = Lip(B) ‖A‖ ≤ ‖T ‖PIL
p
+ ε.

Since this holds for all ε > 0 we get
∥∥∥T̃

∥∥∥
PIL

p

≤ ‖T ‖PIL
p
. For the reverse

inequality, note that

‖T ‖PIL
p
=

∥∥∥T̃ ◦ i
∥∥∥
PIL

p

≤
∥∥∥T̃

∥∥∥
PIL

p

.

�
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3. Lipschitz Pietsch-∞-integral operators

In this section we extend the definition of the class of Pietsch-∞-integral lin-
ear operators to the case of Lipschitz operators and we will show a factorization
theorem that characterizes these mappings.

Definition 3.1. We say that a Lipschitz operator T ∈ Lip0(X,E) is Lipschitz
Pietsch-∞-integral if there is a regular Borel countably additive vector measure
m : B(BX#) −→ E of bounded semivariation such that

(3.1) T (x) =

∫

B
X#

f (x) dm(f), x ∈ X.

We denote by PIL∞(X,E) the set of all these mappings and we put

‖T ‖PIL
∞

= inf ‖m‖ (BX#),

taking the infimum over all m such that (3.1) holds.

Remark 3.2. If T ∈ PIL∞(X,E) then Lip(T ) ≤ ‖T ‖PIL
∞

. In order to see this,

for ε > 0 choose m such that ‖m‖ (BX#) ≤ ‖T ‖PIL
∞

+ ε and for all x, y ∈ X,

‖T (x)− T (y)‖ ≤

∫

B
X#

|f (x)− f (y)| dm(f)

≤ ‖m‖ (BX#)d(x, y)

≤ (ε+ ‖T ‖PIL
∞

)d(x, y).

Hence, Lip(T ) ≤ ‖T ‖PIL
∞

.

Now we prove the main result of this section. We characterize the Pietsch-
∞-integral Lipschitz operators by means of a factorization scheme through a
weakly compact linear operator.

Theorem 3.3. For a Lipschitz operator T ∈ Lip0(X,E), the following state-
ments are equivalent.

(1) T is Lipschitz Pietsch-∞-integral.
(2) There are a compact Hausdorff space K, a Lipschitz embedding ϕ ∈

Lip0(X,C(K)) and a weakly compact linear operator S ∈ L(C(K), E)
such that the following diagram commutes

(3.2) X
T //

ϕ

��

E

C(K).

S

<<
②
②
②
②
②
②
②
②

(3) There are a regular Borel finite measure space (Ω,Σ, µ), a weakly com-
pact operator R ∈ L(L∞(µ), E) and a Lipschitz embedding φ ∈ Lip0(X,L∞(µ))
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giving rise to the following commutative diagram

(3.3) X
T //

φ

��

E

L∞(µ).

R

;;
①
①
①
①
①
①
①
①
①

In addition,

‖T ‖PIL
∞

= inf ‖S‖Lip(ϕ) = inf ‖R‖Lip(φ).

Where the first infimum is taken over all S and ϕ as in (3.2) and the second
is taken over all R and φ as in (3.3).

Proof. (1)=⇒(2). Take T ∈ PIL∞(X,E). For every ε > 0 choose m sat-
isfying (3.1) and ‖m‖ (BX#) ≤ ‖T ‖ PIL

∞

+ ε. Consider the linear operator

S : C(BX#) −→ E defined by

S(h) =

∫

B
X#

hdm,

for all h ∈ C(BX#) and the natural Lipschitz isometric embedding ιX : X −→
C(BX#). In this case, for all x ∈ X we can write

S ◦ ιX(x) =

∫

B
X#

ιX(x)(f)dm(f) =

∫

B
X#

f(x)dm(f) = T (x).

Theorem VI.2.5 in [11] asserts that S is weakly compact with norm ‖S‖ =
‖m‖ (BX#) and then

‖S‖Lip(ιX) = ‖m‖ (BX#) ≤ ‖T ‖PIL
∞

+ ε.

(2)=⇒(3). There is a a regular Borel countably additive vector measure m :

B(K) −→ E of bounded semivariation such that S(f) =

∫

K

fdm for all f ∈

C(K) and ‖m‖ (K) = ‖S‖ (see [11, Theorem VI.2.1, VI.2.5 and Corollary
VI.2.14]). It follows that

T (x) = S ◦ ϕ(x) =

∫

K

ϕ(x)dm, x ∈ X.

On the other hand, [11, Corollary I.2.6 and Theorem I.2.1] assures the existence
of a regular Borel finite measure µ on B(K) such that m(A) = 0 for all A ∈
B(K) which satisfy that µ(A) = 0. Define the operator R ∈ L(L∞(µ), E) by

R(f) =

∫

K

fdm, f ∈ L∞(µ)

with ‖R‖ = ‖m‖ (K) (see [11, Theorem I.1.13]). This operator is weakly
compact (see [11, Definition I.1.14 and Theorem VI.1.1]). Consequently,

R ◦ (j∞ ◦ ϕ) =

∫

K

j∞ ◦ ϕdm =

∫

K

φdm = T.
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(3)=⇒(1). As in the proof of the second implication of Theorem 2.5, starting
from the diagram (3.3), consider the linearization φL of φ ∈ Lip0(X,L∞(µ))

and let φ̃L ∈ L(C(BX#), L∞(µ)) be the extension of φL, i.e., the following
diagram commutes

Æ (X)
φL //

J

��

L∞(µ)

C(BX#).
φ̃L

99
s
s
s
s
s
s
s
s
s
s

The linear operator R ◦ φ̃L : C(BX#) −→ E is weakly compact. Let m be the

representing vector measure of R ◦ φ̃L, that is R ◦ φ̃L(f) =

∫

B
X#

fdm for all

f ∈ C(BX#) and ‖m‖ (BX#) =
∥∥∥R ◦ φ̃L

∥∥∥. It follows that

T (x) = R ◦ φ(x) = R ◦ φ̃L ◦ J ◦ kX(x)

=

∫

B
X#

J ◦ kX(x)dm,

for all x ∈ X, and then T ∈ PIL∞(X,E) and

‖T ‖PIL
∞

≤ ‖m‖ (BX#) ≤ ‖R‖
∥∥∥φ̃L

∥∥∥ = ‖R‖Lip(φ).

Since this is true for every factorization as (3.3), we have ‖T ‖PIL
∞

≤ ‖R‖Lip(φ).

In order to show the reverse inequality, take T ∈ PIL∞(X,E) and ε > 0.
Then there is m : B(BX#) −→ E (as in Definition 3.1) such that (3.1) is
true and ‖m‖ (BX#) ≤ ε+ ‖T ‖PIL

∞

. Following the proof of (2)=⇒(3), we can

find a regular Borel finite measure µ on BX# and a weakly compact operator
R ∈ L(L∞(µ), E) represented by m such that

‖R‖Lip(φ) = ‖R‖ = ‖m‖ (BX#) ≤ ε+ ‖T ‖PIL
∞

,

where φ ∈ Lip0(X,L∞(µ)), is the Lipschitz embedding defined by φ = j∞ ◦ ιX .

The required inequality follows and the second equality follows in a similar
way. �

4. Some relations of Lipschitz Pietsch-p-integral operators with

other Lipschitz operator ideals.

4.1. Lipschitz p-summing operators. The definition of the Lipschitz p-
summing operators below was first given by Farmer and Johnson in [13].

Definition 4.1. For a pointed metric space X and a Banach space E, the
mapping T ∈ Lip0(X,E) is called Lipschitz p-summing, 1 ≤ p < ∞, if there
exists a constant C > 0 such that for all x1, . . . , xn, x

′
1, . . . , x

′
n in X ,

(4.1)

n∑

i=1

‖T (xi)− T (x′
i)‖

p
≤ Cp sup

f∈B
X#

n∑

i=1

|f(xi)− f(x′
i)|

p.
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In this case we put πL
p (T ) = inf {C : satisfying (4.1)}. The set of all Lipschitz

p-summing operators from X to E is denoted by ΠL
p (X,E).

It is well known that (ΠL
p , π

L
p (·)) is a Banach Lipschitz operator ideal (see

[1, Proposition 2.5]).
We can establish the following comparison between the classes of Lipschitz

Pietsch-p-integral operators and Lipschitz p-summing operators.

Proposition 4.2. Let 1 ≤ p <∞. Every Lipschitz Pietsch-p-integral operator
T : X −→ E is Lipschitz p-summing with πL

p (T ) ≤ ‖T ‖PIL
p
.

Proof. If T ∈ PILp (X,E), for ε > 0 we choose a typical Lipschitz Pietsch-p-
integral factorization

T = A ◦ ip ◦B : X
B
−→ L∞(µ)

ip
−→ Lp(µ)

A
−→ E,

with ‖A‖Lip(B) ≤ ε + ‖T ‖PIL
p
. The mapping ip is linear p-summing with

πp(ip) = 1 (see [10, Page 40]). Then it is Lipschitz p-summing with πL
p (ip) = 1

(see [13, Theorem 2]). By the ideal property concerning the Lipschitz operator
ideal ΠL

p , we have that T ∈ ΠL
p (X,E) and πL

p (T ) ≤ ‖A‖Lip(B) ≤ ε+‖T ‖PIL
p
.

�

4.2. Lipschitz Grothendieck-p-integral operators. The notion of Lips-
chitz Grothendieck-p-integral operators (p ≥ 1) from a pointed metric space X
into a Banach space E was introduced by Jiménez-Vargas et al. in [15] (under
the name of strongly Lipschitz p-integral operators).

The mapping T ∈ Lip0(X,E) is Lipschitz Grothendieck-p-integral (in sym-

bols T ∈ GILp (X,E)) if JE ◦ T ∈ PI
L
p (X,E∗∗), where JE : E −→ E∗∗ is the

canonical injection. The class (GILp , ‖·‖GIL
p
) is a Banach Lipschitz operator

ideal where ‖T ‖GIL
p
= ‖JE ◦ T ‖PIL

p
(see [3, Remark 4.3 and Proposition 4.8]).

It is immediate that PILp (X,E) ⊂ GILp (X,E) and ‖T ‖GIL
p
≤ ‖T ‖PIL

p
for all

T ∈ PILp (X,E).
The proof of the next result is an easy adaptation of [5, Proposition 3.3].

Proposition 4.3. If the Banach space E is norm one complemented in E∗∗

(in particular, if E is a dual Banach space), then GILp (X,E) ⊂ PILp (X,E)

and ‖T ‖GIL
p
= ‖T ‖PIL

p
for all T ∈ GILp (X,E).

4.3. Strongly Lipschitz p-nuclear operators. Chen and Zheng in [7] intro-
duced the concept of strongly Lipschitz p-nuclear operators. For a pointed met-
ric space X and a Banach space E, a mapping T ∈ Lip0(X,E) is strongly Lip-
schitz p-nuclear (1 ≤ p <∞) if there exist B ∈ Lip0(X, ℓ∞) and A ∈ L(ℓp, E)
and a diagonal operator Mλ ∈ L(ℓ∞, ℓp) induced by λ = (λi)i≥1 ∈ ℓp (i.e.
Mλ((ξi)i≥1) = (λiξi)i≥1) such that

T = A ◦Mλ ◦B : X
B
−→ ℓ∞

Mλ−→ ℓp
A
−→ E.
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The Banach space of all these mappings is denoted by SNL
p (X,E) and the norm

is defined by ‖T ‖SNL
p
= inf ‖A‖ ‖Mλ‖Lip(B), where the infimum is taken over

all the above factorizations.

Proposition 4.4. Every strongly Lipschitz p-nuclear operator is Lipschitz Pietsch-
p-integral. Moreover, ‖T ‖PIL

p
≤ ‖T ‖SNL

p
for all T ∈ SNL

p (X,E).

Proof. Given ε > 0, take T ∈ SNL
p (X,E) with the above factorization such

that

‖A‖ ‖Mλ‖Lip(B) ≤ ε+ ‖T ‖SNL
p
.

In this case, ℓ∞ and ℓp are the spaces L∞(µ) and Lp(µ) with µ the counting
measure on N respectively and Mλ : L∞(µ) −→ Lp(µ) is the multiplication
operator induced by λ ∈ Lp(µ) (i.e. Mλ(f) = λ.f). Use [10, Page 111] to see
that Mλ is a Pietsch-p-integral linear operator and ‖Mλ‖PIp

= ‖Mλ‖ and then

it is Lipschitz Pietsch-p-integral with ‖Mλ‖PIL
p
≤ ‖Mλ‖ (by Remark 2.2). In

view of the ideal property of PILp , we are done. �

4.4. Lipschitz weakly compact operators. The definition of Lipschitz weakly
compact operators is due to Jiménez-Vargas et al. ([15]).

Definition 4.5. Let X be a pointed metric space and let E be a Banach
space. The mapping T ∈ Lip0(X,E) is called Lipschitz weakly compact if

the set
{

T (x)−T (x′)
d(x,x′) : x, x′ ∈ X, x 6= x′

}
is relatively weakly compact in E. The

set of all Lipschitz weakly compact operators from X into E is denoted by
Lip0W(X,E).

Proposition 2.8 in [15] asserts that every Lipschitz Grothendieck-p-integral
operator is Lipschitz weakly compact. So, according to the comments above
we have that PILp (X,E) ⊂ Lip0W(X,E).

Acknowledgements. We would like to thank the referee for his/her careful
reading and useful suggestions. Also, we acknowledge with thanks the support
of the general direction of scientific research and technological development
(DGRSDT), Algeria.

References
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